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ABSTRACT: Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn
(Crataegus pinnatif ida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total
acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of
the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-
squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these
samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares
regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for
quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated
by prediction data sets.

KEYWORDS: near-infrared spectroscopy, comparative chemometrics, prediction: sugar, acid and phenol content,
Chinese hawthorn fruit

■ INTRODUCTION

Near-infrared spectroscopy (NIRS) is a well-established
analytical technique, which has been applied for the
simultaneous determination of various components of food; it
affords simple sample preparation and rapid, simultaneous
analysis of several analytes in a large number of samples as well
as geographical origin classification.1,2 NIRS combined with
chemometrics has been used for food authentication.2 Also,
chemometric methods of data analysis have been applied
successfully for the prediction and classification of different
analytes with the use of NIRS.3 Fernandez Pierna et al.4 applied
various chemometrics methods, such as partial least-squares
regression (PLS), artificial neural networks (ANN), and least-
squares-support vector machines (LS-SVM), for large near-
infrared spectroscopic data matrices from feed and related
products; the results indicated that ANN and LS-SVM methods
are very powerful methods for nonlinear data, and LS-SVM
improved the RMSE (root-mean-square error) for independent
test sets when compared to results from PLS and ANN models
on the same data.
NIRS calibration models have also been used for fruit and

related products, particularly for the analysis of sugar, acid,
phenol, and antioxidants. Xu et al.5 utilized several chemo-
metrics methods such as the multiple linear regression (MLR),
genetic algorithm-PLS (GA-PLS), interval PLS (iPLS), and the
successive projection algorithm-MLR combined with GA (GA-
SPA-MLR) for analysis of Vis/NIR spectroscopic data for the
determination of sugar content in pears. It was found that the
GA-SPA-MLR method was satisfactory for applications in

industry. Xie et al.6 investigated the use of NIR transmittance
spectroscopy coupled with PLS regression for the non-
destructive, simultaneous measurement of titratable acidity as
well as malic and citric acids of bayberry fruit; the results
demonstrated that NIR spectroscopic techniques have potential
for rapid prediction of titratable acidity and citric acid content
in bayberry fruit; however, the accuracy of this method was
unsatisfactory. Also, NIRS was applied for the determination of
antioxidant activity in food, and this work was supported by
principal component regression modeling (PCR).7 In addition,
Zhang et al.8 reported that total phenols, flavonoid content, and
antioxidant capacity of rice grain could be analyzed with the use
of the same technique in combination with principal
component analysis (PCA), PLS, and modified PLS regression
methods.
Crataegus pinnatif ida Bge. var. major N.E.Br. or C pinnatif ida

BGE. (family Rosaceae), also referred to as “Hawthorn”, is
associated with about 280 wood plant species; these are
distributed in the Northern Hemisphere, mainly in China,
Europe, and North America.9 Hawthorn fruit, which is rich in
phenolic compounds, is commonly used in food and for
traditional medicinal applications. In China, hawthorn plants
are widely grown in Shandong, Hebei, Henan, and Liaoning
provinces, and the chemical composition, particularly the
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bioactive constituents, of the fruit are affected by plant varieties,
cultivation methods, soil, climate, and geographical origin. In
general, in this context, the “Shanlihong” variety from the
Shandong province is often preferred.10 Consequently, rapid,
cost-effective and readily accessible analytical methods for the
discrimination of fruit varieties are of commercial and health
importance.
Hawthorn fruit is consumed worldwide principally because of

their high phenolic content, which has been demonstrated by
many studies to have some benefit for the prevention of
cardiovascular disease.11 The analyses of total phenol content
(TPC) and total antioxidant activity (TAA) of fruit have been
investigated with the use of the Folin−Ciocalteu method (FC),
and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scaveng-
ing activity, Trolox equivalent antioxidant capacity (TEAC),
and ferric reducing antioxidant power (FRAP) procedures.12 In
addition, the flavor and sensory characteristics of the fruit are
directly influenced by the content and composition of acids,
sugars, and sugar alcohols, and such analytes have been
commonly determined by gas chromatography and mass
spectrometry.13 The total acid content is used as an important
criterion to assess the quality of the hawthorn fruit in a TCM.14

However, these methods are generally time-consuming and
require many chemicals for analysis, which are costly, especially
when many fruit samples are analyzed for quality control.
The aims of this study were to research and develop a rapid,

simple and nondestructive NIRS method of analysis to
discriminate the Chinese hawthorn fruit, collected from
different districts (Shandong, Hebei, and Henan provinces),
with the aid of unsupervised PCA, and supervised linear
discriminant analysis (LDA), PLS-DA, BP (back-propagation)-
ANN modeling, and to build calibration models for the
prediction of TS, TA, TPC, and TAA of Chinese hawthorn fruit
from NIRS data with the use of linear PLSR as well as the
nonlinear BP-ANN and LS-SVM methods. In addition, the
analytical performance of the three prediction methods was
compared.

■ MATERIALS AND METHODS
Chemicals and Reagents. Folin−Ciocalteu reagent, 2,2-diphenyl-

1-picrylhydrazyl radical (DPPH), gallic acid, 2,2′-azino-bis-(3-ethyl-
benzothiazoline-6-sulfonate) diammonium salts (ABTS), 2,4,6-tris-(2-
pyridyl)-s-triazine (TPTZ), and 6-hydroxy-2,5,7,8-tetramethyl-2-car-
boxylic acid (Trolox) were obtained from Sigma-Aldrich (St. Louis,
MO); hydrochloric acid, sulfuric acid, sodium carbonate, phenol and
phenolphthalein, ferric chloride (FeCl3), sodium acetate, and
potassium persulfate (Xilong Chemical Ind., Co., Ltd., Guangzhou,
China) as well as sodium hydroxide and methanol (Damao Chemical
Reagent Factory, Tianjin, China) and glucose (Donghong Chemical
Reagent Factory, Guangzhou, China) were purchased from different
companies. All reagents and solvents were analytical grade or high
performance liquid chromatography (HPLC) grade, and freshly
doubly distilled water was used throughout for aqueous solutions.
Hawthorn Samples and Sample Preparation. Ninety-six

hawthorn samples were collected from three different cultivated
regions in China: 36 from Shandong (SD), 31 from Hebei (HB), and
29 from Henan (HN). All samples were harvested during the crop
season in September or October 2011; they were sliced and dried in a
cool and shady place after harvesting, and the seeds were removed
manually. Then, the seedless fruit was ground into powder using a
grinder and passed through an 80-mesh sieve. Powdered samples were
placed in plastic, sealed bags (85 × 60 mm) and stored in a dry, dark
place at 4 °C and 85% relative humidity until analysis. To eliminate
moisture interference, the samples were dried at 40 °C for 24 h before
chemical analysis and NIRS sampling. The data matrix of pretreated

NIR spectra (N = 96 samples) was divided into a calibration set (Nc =
72 samples) and a prediction set (Np = 24 samples) with the use of
the Kennard−Stone (K−S) algorithm,15 to evaluate the performance
of the calibration models.

Analysis by Common Methods. Total sugar (TS), total acid
(TA), total phenolic content (TPC), and total antioxidant activity
(TAA) were determined according to the acid−base titration or UV/
vis spectroscopic methods.

Determination of Total Sugar. Total sugar (TS) content was
determined according to the phenol sulfuric acid method.16 An
accurately weighed, powdered fruit sample (0.25 g) was transferred to
a 100 mL conical flask; water (50 mL) and hydrochloric acid (15 mL)
were added; the sample was hydrolyzed in a thermostatic vibrator at
100 °C for 60 min. Subsequently, the sample was cooled to room
temperature and filtered through #202 filter paper (Wohua Co.,
Hangzhou, China). The flask was rinsed twice with 30 mL of water,
and all filtrates were pooled and diluted to volume in a 250 mL
volumetric flask for sugar determination.

Standard solutions containing 100 mg/L glucose were prepared.
Aliquots of 0.2, 0.4, 0.6, 0.8, and 1.0 mL were transferred to five
different 10 mL test tubes and diluted to 1.0 mL with water,
respectively. Each test tube solution was then mixed with 1.0 mL of 5%
phenol and 5.0 mL of sulfuric acid; the absorbance of each solution
was then measured at 490 nm with a model 8453 spectrophotometer
(Agilent, Waldbronn, Germany) in a 1 cm quartz cuvette after 20 min
at 30 °C; a standard glucose absorbance curve was then obtained from
these measurements. A 0.2 mL aliquot of each hawthorn fruit sample
solution was measured in the same manner as the standard glucose
solutions. Results were expressed as grams of glucose equivalent/100 g
dry weight (g glucose/100 g DW). Each sample was determined in
duplicate, and the mean of two measurements was used for further
analysis.

Determination of Total Acid. Reference analysis of the total acid
content (TA) was carried out according to the procedure in the
Chinese Pharmacopoeia.14 Hawthorn powder (1.0 g) was extracted in
100 mL of water in a magnetic stirring apparatus for 4 h at 25 ± 0.2
°C; the extract was filtered through filter paper. Filtrate (50 mL) was
pipetted into a conical flask, diluted with 50 mL of water and titrated
with 0.1 mol/L sodium hydroxide against the phenolphthalein
indicator. Since 1.0 mL of 0.1 mol/L NaOH is equivalent to 6.404
mg of citric acid, the results were expressed as grams of citric acid
equivalent/100 g dry weight (g citric acid/100 g DW) of the fruit
sample. Titrations were performed in duplicate, and the average of two
determinations was used for further interpretation.

Extraction of the Phenolic Constituents. Powdered samples (0.5
g) were extracted with 25 mL of 80% methanol in a thermostatic water
bath, the sample was refluxed twice (80 °C, 3 h), and the extracts were
filtered through filter paper. The two filtrates were combined in a 100
mL volumetric flask, made up to the mark with 80% methanol, and
stored at 4 °C.

Determination of The Total Phenolic Content. Total phenolic
content (TPC) was analyzed in duplicate.17 The Folin−Ciocalteu
reagent was diluted 10-fold with water. Aliquots (1.0 mL each) of
hawthorn extracts or standard solutions of gallic acid (50, 100, 150,
200, and 250 mg/mL) were added to different 25 mL test tubes; the
diluted Folin−Ciocalteu reagent (5.0 mL) was added to each tube,
which was then shaken. The tubes were allowed to equilibrate at
ambient temperature (25 ± 0.2 °C) for 4 min, and then 4 mL of 7.5%
sodium carbonate (w/v) solution was added; this solution was then
immediately diluted to 25 mL with water and mixed thoroughly. This
mixture was kept for 90 min at ambient temperature (25 ± 0.2 °C) in
the dark and was then transferred to a 1 cm quartz cuvette for
absorbance measurements at 750 nm against a water blank with a
model 8453 spectrophotometer. The TPC estimates were expressed as
grams of gallic acid equivalent/100 g dry weight (g gallic acid/100 g
DW) of sample with the use of a gallic acid calibration plot.

The total antioxidant activity (TAA) of the samples was determined
by three common chemical methods, which are summarized below:

Determination of TAA-FRAP Assay. Antioxidant activity of
hawthorn extract was estimated by the FRAP method.18 The FRAP
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reagent was prepared in an acetate buffer (300 mM, pH 3.6), 2,4,6-
tripyridyl-s-triazine (TPTZ; 10 mM in 40 mM HCl), and FeCl3 (20
mM). The proportions of acetate buffer, TPTZ, and FeCl3 were 10:1:1
(v:v:v), respectively. For the determination of the antioxidant activity,
the FRAP reagent (4.00 mL) was mixed with 1 mL of sample extract
and a Trolox standard or control (80% CH3OH); the reaction was
kept at 37 °C for 4 min before absorbance was measured at 593 nm.
Antioxdant activity was expressed in terms of Trolox (0.15 mg/mL),
and 20, 40, ..., 100 μL aliquots in steps of 20 μL of standard solutions
were used to establish a calibration curve. TAA was expressed as
micromoles of Trolox/g dry weight of sample (μmol Trolox/g DW).
All measurements were made in duplicate.
Determination of TAA-DPPH Assay. The DPPH method involved

the free radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH).19 A
hawthorn extract (0.5 mL) was added to 0.6 mol/L DPPH in 80%
methanol solution (0.5 mL); this solution was diluted to 5 mL with
80% methanol. The mixture was shaken vigorously and kept for 30
min at ambient temperature (25 ± 0.2 °C) in the dark. The
absorbance was measured in a 1 cm quartz cuvette at 515 nm against
80% methanol as a blank. A calibration curve was constructed using a
series of standard Trolox concentrations similarly to the FRAP
method. TAA was expressed as micromoles of Trolox/g dry weight of
sample (μmol Trolox/g DW). All measurements were made in
duplicate.
Determination of TAA-ABTS Assay. Antioxidant activity was

measured using the improved ABTS method. 20 ABTS+ was prepared
by the reaction of 7 mmol/L ABTS solution with 2.45 mmol/L
potassium persulfate; the mixture was kept in the dark at ambient
temperature (25 ± 0.2 °C) for 12−16 h before use. ABTS+ was diluted
with ethanol to an absorbance of 0.700 ± 0.002 at 734 nm. For the
determination of samples, 800 μL of sample extract was reacted with
3.92 mL of ABTS+, and the absorbance at 734 nm was recorded after 6
min. A calibration curve was constructed using a series of Trolox
concentrations as standards as for the FRAP method. TAA was
expressed as micromoles of Trolox/g dry weight of sample (μmol
Trolox/g DW). All measurements were made in duplicate.
NIR Spectroscopic Measurements. NIR spectra were measured

in the diffuse reflectance (DR) mode at ambient temperature (25 ±
0.2 °C) on a U-4100 UV/vis/NIR spectrophotometer (Hitachi, Ltd.,
Tokyo) equipped with a standard integrating sphere and a PbS
detector. The raw spectral data were collected with the use of the UV
Solutions 2.1 program (Hitachi, Ltd., Tokyo). Samples (0.55 g each)
were placed into a glass cell (diameter = 22 mm, depth = 2.5 mm),
which was gently compacted with quartz glass. Spectra (32 scans, 2 nm
resolution, 800 to 2500 nm, and 851 points/spectrum) were collected
in the log(1/R) mode (R = relative reflectance; BaSO4, the optical
reference standard). Each sample was measured in triplicate, and the
average spectrum was used for further analysis.
Data Preprocessing and Software. NIR spectroscopic data (96

objects × 851 wavenumbers) were exported in text format, organized
in Excel spreadsheets, and then transferred into MATLAB (version
6.5, Mathworks Inc., Natick, MA, United States) for multivariate
analysis. It is common to apply data pretreatment methods for
comparison of NIR spectroscopic profiles before constructing
calibration models, and in this work, several spectroscopic
preprocessing methods were applied and compared; they included
multivariate scatter correction (MSC),21 standard normal variate
(SNV),22 detrending,22 and Savitzky−Golay filter (9 points, second-
order polynomial, and first or second derivatives).23 The first-
derivative transformation was finally selected as the optimal pretreat-
ment method on the basis of the best prediction results, which were
compared with the use of the correlation coefficient of prediction
(Rpre) and root-mean-square error of prediction (RMSEP) of the
calibration models.
Development and Validation of Chemometrics Models.

Chemometrics models were developed with the use of the first-
derivative NIR spectroscopy. For the discrimination of hawthorn fruit
on the basis of the geographical origin, the data matrix was submitted
for interpretation with the use of the unsupervised pattern recognition
technique, PCA, and supervised pattern recognition techniques, LDA,

PLS-DA, and BP-ANN. The analytical performance for the
determination of chemical components and antioxidant activities was
compared with the use of the linear regression method, PLSR, and
nonlinear regression methods, BP-ANN and LS-SVM.

Unsupervised Pattern Recognition Methods. PCA is a method
which transforms the original data matrix into one composed of
orthogonal variables called principal components (PCs). Each PC is a
linear combination of the original data, and there are as many PCs
extracted from the data matrix as there are original variables, i.e.,
sampled NIR wavenumbers in this work. Each PC accounts for
consecutively decreasing the amount of data variance, which results in
the compression of significant data into just a few PC variables. Each
data object has a score value on each PC, and each original variable is
associated with a loadings value on each PC. The new PC data is
commonly displayed in two-dimensional score biplots.24

Supervised Pattern Recognition Methods. LDA is a common
method for data classification. The method optimizes data vectors to
achieve maximum separation between objects. Discrimination
functions are linear combinations of descriptors that maximize the
ratio of between-class variance and minimize the ratio of within-class
variance, and the number of linear discrimination functions is equal to
the number of sample classes minus one. Commonly, a plot based on
the initial linear discrimination functions is used for classification
studies.

In this work, each sample was assigned a dummy variable for
calibration modeling (SD = 1, HB = 2, and HN = 3), and these values
were used for LDA modeling; a cutoff value of ±0.5 was used as
criterion of a value of the dummy variable. In general, it has been
suggested that for LDA modeling, the number of objects should be at
least three times larger than the number of variables.25 In this work,
the number of variables (851 wavenumbers) was much larger than the
number of objects (96 samples), so PCA was applied to reduce the
number of variables, i.e., the variables were transformed to the smaller
number of PCs for LDA.26 To obtain the optimum number of PC
variables (extracted with the use of PCA) for LDA, models from 3
(77.9% variance) to 32 PCs (96.1% variance) were constructed. The
optimal model was selected on the basis of prediction performance
and contained 27 PCs (criteria: Rpre and RMSEP).

PLS-DA is a variant of PLS. In this method, the response variables
are replaced by a set of dummy variables describing the origin as a
reference value; a dummy variable was assigned to the samples from a
particular origin (SD = 1, HB = 2, and HN = 3), and the classification
of samples was based on a cutoff value of ±0.5 of dummy variable. The
optimum number of factors was chosen by the leave-one-out cross-
validation (LOOCV) method.27

BP-ANN has a feed forward network structure including input,
hidden, and output layers, and this method was used in the present
work. The details of this model have been previously described,28 and
model parameters have to be optimized; this involves the number of
neurons in the hidden layer, scale functions, learning rate factor,
momentum factor, and initial weights. Dummy variables were also
assigned to the samples from each geographical origin as with the LDA
and PLS-DA modeling.

Linear and Nonlinear Regression Methods. PLSR is a common,
linear method for quantitative analysis, and it investigates relationships
between spectral and concentration data.29 In this method, data is
compressed into orthogonal factors, which have similar properties to
PCs in PCA. In this work, the number of significant factors for
prediction modeling was selected by the leave-one-out cross-validation
method and the sought model should have the lowest RMSE of cross-
validation.30

Presence of nonlinearity in NIRS measurements is well-known, and
generally, it occurs because of the following: Beer’s law is not followed
at high analyte concentrations; nonlinearity in the detector response;
light source drift; and particle size. Since nonlinear relationships may
occur from time to time with the spectroscopic data, it is appropriate
to compare the performance of the PLSR prediction models with
nonlinear ones such as BP-ANN,28 and LS-SVM.31 For this work, the
BP-ANN model parameters were estimated.
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LS-SVM is a modified algorithm based on the classical SVM,31 and
it is another nonlinear regression method. Conveniently, and
importantly, in this method, only linear equations are used for
modeling support vectors. Radial basis function (RBF) is commonly
used and incorporates a Gaussian kernel function; it involves the
optimization of two important parameters: the regularization
parameter, gam (γ), and the RBF kernel function parameter, sig2

(σ2). These are extracted with the use of the two-step grid search
technique and LOOCV.27

It is generally suggested to use spectroscopic data compressed into
statistically significant factors or latent variables (LV) for modeling
with BP-ANN or LS-SVM methods; it is an important step to select
appropriate input variables. In this work, the PLSR LVs were used as
input variables for BP-ANN and LS-SVM modeling, respectively; the
significant LVs were estimated by the LOOCV method.

■ RESULTS AND DISCUSSION
NIR Spectroscopy Analysis. Original NIR-DR spectra of

96 hawthorn samples from three different provinces (Figure
1A) are quite similar and broad; they are generally known to

consist of many overlapping narrow bands of different
vibrational modes. The first-derivative preprocessed spectra of
all samples (Figure 1B) show peaks at about 1160 and 1425
nm, which are related to the stretch−bend combination mode
of water and the OH first overtone band of phenols,32,33

respectively. The peaks at 1495 and 1610 nm are attributed to
the NH2 group of nitrogen compounds and a glucose overtone
band,34,35 respectively. A band observed at 1695 nm
corresponds to the first overtone of the C−H stretch,36 while

two bands located at 1906 and 1960 nm correspond to the
second overtone of CO and O−H vibrations and O−H first
overtone of water,37,38 respectively. The distinct peaks at 2040
and 2160 nm are assigned to the N−H combinations and the
aromatic C−H stretch of the polystyrene-like backbone,39,40

respectively. When the sample spectra from the three different
provinces are examined, they do not show any significant
differences and, thus, it is very difficult to discriminate them on
the basis of geographical origin. Consequently, the NIRS data
were submitted to PCA, LDA, PLS-DA, and BP-ANN analysis.

Classification of Hawthorn Samples by PCA, LDA,
PLS-DA, and BP-ANN Methods. PCA was applied to the
first-derivative spectroscopic data matrix (96 objects × 851
variables) from the hawthorn samples. The PC1 versus PC2
scores plot (Figure 2A; PC1, 61.0%, PC2, 11.9% data variance

described) shows that, when the objects are projected onto
PC1, the SD objects have mostly negative scores while the HN
ones mostly have positive scores; thus, these two groups are
reasonably well separated. However, when the HB objects are
projected onto PC1, they comprehensively overlap the other
two object groups; this indicates that the three groups cannot
be separated on the basis of their origin. On PC2, the HB
objects have positive scores and are reasonably separated from
the other two groups, which overlap each other with mostly
negative scores, i.e., again there is no clear-cut discrimination of
the three types of sample on the basis of their origin. However,

Figure 1. Representative NIR spectra: unprocessed (A) and first-
derivative (B) spectra of 96 Chinese hawthorn fruit samples.

Figure 2. (A) PCA scores plot for 96 samples of Chinese hawthorn
fruit: Shandong (SD, red), Hebei (HB, blue), and Henan (HN, green).
(B) Loadings profiles for the first two PCs of the NIR spectroscopic
data (range: 800−2500 nm).
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in the PC1 versus PC2 plane, the three groups are more or less
separated on the basis of their combined properties on the two
PCs.
A PC1 and PC2 biplot accounted for most of the NIRS data

variance (72.9%) and, hence, was used to demonstrate any
object−object clustering (Figure 2B). The loadings profiles
indicate the wavenumber variables, which significantly contrib-
ute to the discrimination of the objects described in the biplot.
The highest loadings with positive values are observed at about
1410 and 1906 nm, and are assigned to the first overtone band
of the OH-stretching vibration and the second overtone of C
O as well as O−H vibrations,37,41 respectively; also, there is one
relatively strong negative loading at about 1970 nm, which is
assigned to the overtones and combination transitions of the
O−H groups.42 The highest loadings for PC2 with positive
values at 1432 and 2036 nm result from the cellulosic OH of a
carbohydrate and second overtone carbonyl band,43,44

respectively. In addition, there is one relatively strong positive
loading at about 2460 nm, which is a combination band for
aromatic compounds.45 Furthermore, there are relatively
strong, negative loadings values at about 1880 and 2280 nm,
which correspond to the O−H and C−O stretch second
overtone bands,40 and C−H combinations.46

Thus, PCA indicated qualitatively that sufficient NIR
spectroscopic differences exist between the sample types to
discriminate on the basis of their origin. The PCA scores were
then used in an attempt to classify the three types of samples
with the use of LDA. The total variance of the first 27 PCs
selected was 95.0%, and these were used as input data for LDA;
the reliability of this classification model was studied on the
basis of the correct classification rate. The classification results
from LDA, PLS-DA, and BP-ANN modeling indicate that
satisfactory performance was obtained with respect to the
Recognition set for the three types of samples, “SD”, “HB”, and
“HN”, with only two samples being misclassified overall; the
misclassification occurred with the LDA model. For the
Prediction set, the performance was less acceptable with 3
out of 9 samples misclassified. A biplot of the first two LDA
discriminant functions displays the scatter of the 96 recognition
and prediction data sets (Figure 3) and indicates that the three
analyte groups are rather better discriminated on the basis of
their geographical origin when compared with the results of the
PCA biplot (Figure 2). The PLS-DA model misclassified six

samples, giving a 97.2% recognition rate and 83.3% prediction
rate, and the BP-ANN method misclassified one sample in the
prediction set, giving 95.8% correct classification rate. The
prediction results indicated that the BP-ANN method
performed better than the other two on this data set. Thus,
these observations suggest that NIR spectroscopy combined
with the BP-ANN data classification method can be used
effectively for the discrimination of hawthorn fruit on the basis
of geographical origin.

Calibration Models. The K−S algorithm is a common
method for extracting an object subset in multidimensional
space, which includes all of the most diverse samples in, for
example, a calibration set; this enables the selection of a subset
of representative samples. Thus, in the context of NIR
spectroscopy, it has been demonstrated that a K−S built
training set has a better prediction performance than a
randomly built set or one constructed from some other well-
known data selection methods such as Kohonen self-organized
mapping and D-optimal designs.
Calibration models were constructed with the use of three

regression methods, i.e., the PLS model, the BP-ANN model,
and the LS-SVM procedure. When compared statistically on
the basis of the TS, TA, TPC, and TAA values in hawthorn fruit
samples, the calibration and prediction sets are apparently well
balanced and analyte values are similarly and evenly spread over
the calibration range. Statistical parameters used to evaluate the
performance of the models included the following: the
correlation coefficient of calibration (Rcal) and prediction
(Rpre) and the root-mean-square error of calibration
(RMSEC), cross-validation (RMSECV), and prediction
(RMSEP). In addition, the residual predictive deviation
(RPD) was calculated for each model as the ratios between
the standard deviation (SD) of the TS, TA, TPC, and TAA
values of the prediction samples and the RMSEP values. A well
behaving model should have large Rcal, Rpre, and RPD values
and low RMSEC and RMSEP; generally, RPD values larger
than 3 indicate a well performing prediction model.47

PLS Model. A PLS calibration model was constructed from
the relevant first-derivative NIRS matrix and each of the four
analyte variables (TA, TS, TPC, and TAA). The significant
factors were factors in each of the four cases and were selected
with the aid of the well-known LOOCV method using the first
lowest RMSECV for all models, i.e., 4, 5, 4, and 3 LVs were
chosen accordingly. In the calibration step, the model was
optimized with the use of the LOOCV method, and generally, a
relatively large Rcal is expected; in the prediction step, another
quite independent data set was taken for prediction, and with
the use of the above-mentioned calibration model, a somewhat
lower Rpre value was obtained in comparison with that from the
previous calibration set. The results of calibration and
prediction sets for the above-mentioned six variables indicate
that only the calibrations for TA and TPC have Rcal > 0.90 and
relatively low RMSEC values, and for prediction, only the TA
variable produced satisfactory results, with the Rpre and RMSEP
values of 0.935 and 0.135. Consequently, it would appear that
linear modeling was insufficient to account for the NIRS data.

BP-ANN Model. A one-hidden-layer feed-forward network
was used for prediction of TS, TA, TPC, and TAA; the first-
derivative NIRS matrix with the four analyte variables (TA, TS,
TPC, and TAA) was processed by this method. The sigmoid
function was chosen for the hidden layer because it facilitates
the processing of a large quantity of nonlinear data and purelin
linear transfer function was selected for the output layer due to

Figure 3. Distribution of 96 samples of the Chinese hawthorn fruit
from Shandong (SD, red), Hebei (HB, blue), and Henan (HN, green)
on the plane defined by the first two functions of the LDA model.
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its stability.25 The learning rate, goal of the least mean square
difference, and the biggest training epochs were set to 0.1,
0.001, and 800, respectively. The BP-ANN modeling involved
the LVs derived from the PLS work as input variables, i.e., input
layer neurons. The number of neurons within the hidden layers
varied from 1 to 10 as their number was sequentially increased
one at a time so as to investigate the model’s prediction
performance; this was compared with the use of the squared
error loss function. The results for the each of the four analytes
generally indicated a somewhat improved prediction perform-
ance in comparison with the PLS model. This observation
indicated that the BP-ANN model performed somewhat better
than the PLS one is in general agreement with previous
analytical work.48

LS-SVM Model. In general, previous studies using LS-SVM
for multivariate calibration models suggested that this method
performed well in prediction modeling of nonlinear data. In this
work, to compare the performance of the LS-SVM with the BP-
ANN method, the same number of LVs used in BP-ANN
modeling were applied as inputs to the LS-SVM models. Also,
the radial basis function (RBF) was included in the LS-SVM
algorithm. Two parameters related to the performance of the
LS-SVM model were optimized: the regularization parameter
gam (γ), which minimizes the training error and minimizes the
model complexity, and the bandwidth sig2 (σ2). The optimal
values of (γ, σ2) were obtained with the use of the two grid
search technique and LOOCV. The calibration and prediction
results for the four analytes, TS, TA, TPC, and TAA, indicate
that the performance of this method is considerably better than
that of the BP-ANN models. This finding is in agreement with a
building body of evidence from previous studies.49,50 These
observations are supported by a comparison of the calibration
and prediction set values obtained from the traditional wet
methods, the NIRS measurements and associated LS-SVM
chemometrics models. The correlation equations for prediction
of TS, TA, TPC, TAA-FRAP, TAA-DPPH, and TAA-ABTS are
as follows: YTS = 0.981XTS + 0.703, YTA = 0.994XTA + 0.020,
YTPC = 0.984XTPC + 0.056, YTAA‑FRAP = 0.970XTAA‑FRAP + 5.437,
YTAA‑DPPH = 0.919XTAA‑DPPH + 10.603, and YTAA‑ABTS =
0.990XTAA‑ABTS + 1.638, respectively. Regarding the nature
and the quality of the NIR spectra, when working with complex
substances such as the hawthorn fruit samples, it is common to
observe lower sensitivity and some nonlinearity; consequently,
relatively lower RPD values for some analytes or activity
properties may arise, and the present study is no exception in
this regard. However, in this work, when the prediction results
were compared statistically with the calibration data, they were
quite satisfying. Thus, when the data scatter is examined at 95%
confidence level, i.e., Y ± 2s, (s = standard deviation), very few
sample points are outside these limits, and those that are, lie
quite closely to the lines representing these limits. These
observations suggest that the NIRS measurements and their
subsequent analytical interpretation are quite acceptable for the
prediction of the six components and property analytes in the
hawthorn fruit. In addition, further support for this conclusion
is provided by the slope values of the six fitted lines (slopes =
0.919−0.994), which are very close to the ideal correlation lines
(slope = 1.000).
An NIR spectroscopic analytical method was developed for

the discrimination of Chinese hawthorn fruit from different
regions and also for the quantitative determination of the
chemical components. However, NIRS of these samples are
complex and overlapped, so generally suitable chemometrics

methods, including linear and nonlinear multivariable calibra-
tion methods, should be used to resolve the NIRS and extract
the effective information. A comparison of performance of the
NIR method and the six standard methods suggests a general
agreement between the two approaches, but with the NIRS
analysis the potential of high sample throughput and low costs,
as well as a significant reduction in solvents and other
chemicals, encourages the application of this method with
hawthorn fruit discrimination and development of similar
methods with other similar agricultural products.
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